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Abstract In this paper, the mathematical analysis of a quasilinear parabolic–hyperbolic problem in a multidimen-
sional bounded domain � is carried out. In a region �p a diffusion–advection–reaction-type equation is set, while
in the complementary �h ≡ �\�p, only advection–reaction terms are taken into account. First, the definition of a
weak solution u is provided through an entropy inequality on the whole domain Q by using the classical Kuzhkov
entropy pairs and the F. Otto framework to transcribe the boundary conditions on ∂� ∩ ∂�h. Since �hp contains
the outward characteristics for the first-order operator set in Qh, the uniqueness proof begins by focusing on the
behavior of u in the hyperbolic layer and then in the parabolic one where u fulfills a variational equality that takes
into account the entered data from Qh. The existence property uses a vanishing-viscosity method.

Keywords Conservation laws with discontinuous flux functions · Coupling of parabolic–hyperbolic equations ·
Entropy formulation · Entropy process solution

1 Introduction

This paper deals with the coupling of a quasilinear parabolic equation with a quasilinear hyperbolic one of first
order in a multidimensional bounded domain �. The former is an advection–diffusion–reaction-type equation set
in a region�p of�, while the latter—set in the complementary region�h = �\�p—only contains an advection–
reaction part.

As mentioned in [1], this type of problem arises from several physical applications that are modeled by a global
advection–diffusion–reaction process in the whole �. However, in these problems, the diffusive term may be rele-
vant only in a subregion �p (which clearly depends on the problem in hand), while it can be neglected in the rest
of the domain �, without affecting the solution appreciably.

Fluid dynamics is one of the fields that benefit greatly from a coupling approach of the type considered here. For
example, we may consider viscous compressible flows around a rigid profile (e.g., an aerofoil). Physical evidence
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320 J. Jimenez, L. Lévi

suggests that viscosity effects are negligible apart from a small region close to the rigid body. This means that the
mathematical modeling of the problem may lead to the use of equations of different character (precisely Euler,
Navier–Stokes equations) in separate regions, by dropping viscous terms when they are very small.

Another example is provided by a heat-transfer problem such as a forced incompressible flow over a heated
plate. In such a case, the thermal diffusivity is much more important in the boundary layer than elsewhere (here
the reduced equation of energy conservation can be assumed to describe the flow field). The velocity field can
be evaluated independently from that of the temperature, while the latter is the solution to an advection–diffusion
equation in which the transport field is given precisely by the (known) velocity. Away from the boundary layer, the
diffusive term may be neglected.

We complete this introduction with yet another example, within the framework of infiltration processes through
a stratified subsoil viewed as an heterogeneous porous medium with different geological characteristics in each
layer, and such that, depending on the physical properties of the rock, the diffusivity effects may be neglected with
respect to those related to transport. This approach has mainly motivated the previous studies of [2] and [3].

2 Mathematical setting

Let � be a bounded domain of R
n, n ≥ 1 (in practical n = 3), such that � = �h ∪ �p; �h (hyperbolic zone)

and �p (parabolic zone) being two disjoint bounded domains with Lipschitz boundaries denoted by �l = ∂�l ,
l ∈ {h, p} and �hp = �h ∩ �p. Let T be a finite positive real. We are interested in the uniqueness and existence of
a measurable and bounded function u on Q ≡]0, T [×� satisfying

∂tu−
n∑

j=1

∂xj (I�p(x)∂xj φ(u)+Kj(x, u))+ g(t, x, u) = 0 on Q, (1)

u = 0 on ]0, T [×∂�, u(0, .) = u0 on �, (2)

with I�p(x) = 1 if x belongs to �p and 0 otherwise,

Kj(x, u) = Kh(u)Bh,j (x)I�h(x)+Kp(u)Bp,j (x)I�p(x), j ∈ {1, . . . , n},
g(t, x, u) = gp(t, x, u)I�p(x)+ gh(t, x, u)I�h(x).

We set �i = ∂�i , i ∈ {h, p}, �hp = �h ∩ �p so that Hn−1(�hp ∩ (�i\�hp)) = 0, where Hq is the q-dimensional
Hausdorff measure.

The vector fields Bi = (Bi,1, . . . , Bi,n) are elements of W 2,+∞(�i)n and such that

�hp ⊂ {σ̄ ∈ �h,Bh(σ̄ ) · νh ≤ 0}. (3)

where νi denotes the outward normal unit vector defined Hn-a.e. on ]0, T [×�i .
The initial datum u0 belongs to L∞(�) and the transport term Kp is Lipschitz continuous on R with a constant

K′
p andKh is a nondecreasing Lipschitz continuous function on R, with a constant K′

h. Besides, for i in {h, p}, the
reaction term gi is measurable and bounded function on ]0, T [×�i × R such that

∃M ′
gi

∈ R, a.e. on ]0, T [×�i × R, |∂ugi | ≤ M ′
gi
.

We assume that there exist a ∈ R
− andb ∈ R

+ such that a < b andφ is a nondecreasing function ofW 1,+∞(a, b),
with φ(0) = 0 satisfying

φ−1 exists on [φ(a), φ(b)],
that is fulfilled, in particular, when {x ∈ [a, b], φ′(x) = 0} has a zero Lebesgue measure. Observe that, thanks to
the Rademacher’s Theorem, the function φ is differentiable a.e. on [a, b]. This will be useful to state the existence
result for (1)–(2).
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Conservation laws with discontinuous flux 321

2.1 Notations and functional spaces

In the sequel, σ (resp. σ̄ ) is a variable of �i ≡]0, T [×�i (resp. �i), i ∈ {h, hp, p}. Thus σ = (t, σ̄ ) for any t of
[0, T ].

We suppose that �p\�hp has a non-zero Hn−1-measure. We may now consider the Hilbert space

V = {v ∈ H 1(�p), v = 0 a.e. on �p\�hp}.
used with the norm ‖v‖V = ‖∇v‖L2(�p)n

, equivalent to the classical H 1(�p)-norm. We denote by 〈〈., .〉〉 the

pairing between V and V ′ and by 〈., .〉 the pairing between H 1
0 (�) and H−1(�). Furthermore,

W(0, T ) ≡ {v ∈ L2(0, T ;H 1
0 (�)); ∂tv ∈ L2(0, T ;H−1(�))},

endowed with the norm ‖v‖W(0,T ) =
(

‖∂tv‖2
L2(0,T ;H−1(�))

+ ‖v‖2
L2(0,T ;H 1

0 (�))

)1/2

. We recall that W(0, T ) ⊂
C([0, T ];L2(�)).

The function sgnµ denotes the Lipschitzian and bounded approximation of sgn given for any positive µ and any
nonnegative real x by

sgnµ(x) = min

(
x

µ
, 1

)
and sgnµ(−x) = −sgnµ(x).

Lastly, to simplify the notation, we set for i in {h, p}:
Gi(u, v) = gi(t, x, u)−Ki(v)divBi and Fi(u, v) = sgn(u− v)(Ki(u)−Ki(v)),

Li(u, v,w) = |u− v|∂tw − Fi(u, v)Bi · ∇w − sgn(u− v)Gi(u, v)w.

and

L(u, v,w) = Lp(u, v,w)I�p(x)+ Lh(u, v,w)I�h(x),

K(x, u) = Kp(u)BpI�p(x)+Kh(u)BhI�h(x),

Fh(u, v,w) = 1

2
{|Kh(u)−Kh(v)| − |Kh(w)−Kh(v)| + |Kh(u)−Kh(w)|}.

3 Statement of uniqueness

3.1 Global definition

We provide a definition of (1)–(2) by considering that (1) can be viewed as a quasilinear parabolic equation that
strongly degenerates on a fixed subdomain. So we refer to [2,3] to propose a weak formulation through a global
entropy inequality on the whole Q. That is why it will be said that:

Definition 1 A measurable function u a solution to (1)–(2) if,

u ∈ L∞(Q), a < −‖u‖∞ ≤ ‖u‖∞ < b, φ(u) ∈ L2(0, T ;V ), (4)

∀ζ ∈ D(Q), ζ ≥ 0, ∀κ ∈ R,
∫

Q

L(u, κ, ζ )dxdt −
∫

Qp

∇|φ(u)− φ(κ)| · ∇ζdxdt

−
∫

�hp

{Kh(κ)Bh −Kp(κ)Bp} · νhsgn(φ(u)− φ(κ))ζdσ ≥ 0,
(5)

∀ζ ∈ L1(�h\�hp), ζ ≥ 0, ∀κ ∈ R

ess lim
τ→0−

∫

�h\�hp
Fh(u(σ + τνh), 0, κ)Bh(σ̄ ) · νhζdσ ≤ 0, (6)
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322 J. Jimenez, L. Lévi

ess lim
t→0+

∫

�

|u(t, x)− u0(x)|dx = 0. (7)

Remark 1
(i) In (5), the term sgn(φ(u)− φ(κ)) on �hp has to be understood in the sense of the trace of φ(u) on �hp from

the side of Qp.
(ii) We consider (5) with κ = b and with κ = a. By comparing the two resulting inequalities we remark that the

boundary integrals and all the κ-dependent terms collapse and it results for any ζ in H 1
0 (Q) that

∫

Q

(
u∂t ζ − (

I�p∇φ(u)+ K(x, u)
) · ∇ζ − g(t, x, u)ζ

)
dxdt = 0. (8)

Hence u is a weak solution since, in the sense of distributions on Q,

∂tu− div
(
I�p∇φ(u)+ K(x, u)

) + g(t, x, u) = 0.

3.2 Study on the hyperbolic zone

We derive from (5) and (6) an entropy inequality on the hyperbolic domain that will be the starting point for estab-
lishing a time-Lipschitzian dependence in L1(�h) of a weak solution to (1)–(2) with respect to the corresponding
initial data. To do so as in [3] and by using (5) and (6), we state first that for any κ in R and any ϕ of D(]0, T [×R

n),
ϕ ≥ 0:

−
∫

Qh

Lh(u, κ, ϕ)dxdt ≤ ess lim
τ→0−

∫

�hp

|Kh(u(σ + τνh))−Kh(κ)|Bh(σ̄ ) · νhϕ(σ )dσ

− ess lim
τ→0−

∫

�h\�hp
|Kh(u(σ + τνh))−Kh(0)|Bh · νhϕdσ + |Kh(κ)

−Kh(0)|
∫

�h\�hp
Bh · νhϕdσ.

But due to (3) and to the monotonicity of Kh, the first integral in the right-hand side is non-positive. We deduce
that, if u is a measurable and bounded function on Q satisfying (5) and (6), then for any κ in R and any ϕ of
D(]0, T [×R

n), ϕ ≥ 0,

−
∫

Qh

Lh(u, κ, ϕ)dxdt ≤ −ess lim
τ→0−

∫

�h\�hp
|Kh(u(σ + τνh))−Kh(0)|Bh · νhϕdσ

+|Kh(κ)−Kh(0)|
∫

�h\�hp
Bh · νhϕdσ. (9)

In order to use the method of doubling variables, we need a technical result based on properties of mollifiers which
has already been pointed out in [4] (or in [5, Chapt. 2]), [6]:

Lemma 1 Let u be a measurable and bounded function onQh such that (9) holds. Then for any continuous function
ϕ on Qh ∪�h
lim
δ→0+

∫

Qh

∫

�h\�hp
|Kh(u(p))−Kh(0)|Bh( ˜̄σ) · νhϕ

(
p̃|� + p

2

)
Wδ

(
p̃|� − p

)
dσ̃dp

= 1

2
ess lim

τ→0−

∫

�h\�hp
|Kh(u(σ + τνh))−Kh(0)|Bh(σ̄ )νhϕ(σ )dσ

and,

lim
δ→0+

∫

Qh

ess lim
τ→0−

∫

�h\�hp
|Kh(u(σ + τνh))−Kh(0)|Bh(σ̄ ) · νhϕ(p|�+p̃

2 )Wδ(p|�−p̃)dσdp̃

= 1

2
ess lim

τ→0−

∫

�h\�hp
|Kh(u(σ + τνh))−Kh(0)|Bh(σ̄ ) · νhϕ(σ )dσ,
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Conservation laws with discontinuous flux 323

where (Wδ)δ>0 is defined on R
n+1 through:

∀δ > 0, ∀p = (t, x1, .., xn) ∈ R
n+1, Wδ(p) = ρδ(t)

n∏

i=1

ρδ(xi),

where (ρδ)δ>0 is a standard sequence of mollifiers on R.

Now from (9) and Lemma 1 we derive:

Theorem 1 Let u1 and u2 be two weak solutions to (1)–(2) for initial data u0,1 and u0,2, respectively. Then

for a.e. t in ] 0, T [,
∫

�h

|u1(t, .)− u2(t, .)|dx ≤ eM
′
gh
t

∫

�h

|u0,1 − u0,2|dx.

Proof We choose in (9) for u1 written in variables p = (t, x),

κ = u2(t̃ , x̃),

and in (9) for u2 in variables p̃ = (t̃ , x̃), κ = u1(t, x). Furthermore in (9) for u1,

ϕ(p, p̃) = ζ

(
p + p̃

2

)
Wδ(p − p̃),

where ζ belongs to D(]0, T [×R
n), ζ ≥ 0 and similarly in (9) for u2. We integrate overQh on the p̃ variables for u1

and on the p variables for u2. We add up. Through classical techniques we pass to the limit with δ on the left-hand
side. The right-hand side goes to 0 with δ, thanks to Lemma 1 for u1 and u2. This results in:

−
∫

Qh

{|u1 − u2|∂t ζ − |Kh(u1)−Kh(u2)|Bh · ∇ζ }dxdt ≤ −
∫

Qh

sgn(u1 − u2)(gh(t, x, u1)− gh(t, x, u2))ζdxdt.

For ζ ≡ αψ , where α belongs to D(0, T ), α ≥ 0 and ψ to D(Rn), ψ ≥ 0, ψ ≡ 1 on Qh, the Lipschitz condition
for gh provides:

−
∫

Qh

|u1 − u2|α′(t)dxdt ≤ M ′
gh

∫

Qh

|u1 − u2|α(t)dxdt.

The conclusion follows from Gronwall’s Lemma. �

3.3 Study in the parabolic zone

On Qp, we characterize a solution to (1)–(2) through a variational equality including the contribution of data
entering from the hyperbolic zone. Indeed:

Proposition 1 Let u be a weak solution to (1)–(2). Then ∂tu belongs to L2(0, T ;V ′). Furthermore, for any v in
L2(0, T ;V ),
∫ T

0
〈〈∂tu, v〉〉dt +

∫

Qp

(∇φ(u)+Kp(u)Bp
) · ∇vdxdt +

∫

Qp

gp(t, x, u)vdxdt

+ ess lim
τ→0−

∫

�hp

Kh(u(σ + τνh))Bh · νhvdσ = 0. (10)

Proof Because of a density argument (8) is still true for any ζ inD(0, T ;H 1
0 (�)). Now let ϕ be given inD(0, T ;V ).

We consider ϕ̂ to be an extension ofϕ toD(0, T ;H 1
0 (�)) and we take ζ = ϕ̂ξ� in (8) where ξ� belongs toW 1,+∞(�),

0 ≤ ξ� ≤ 1, and fulfills for any positive �:

ξ�(x) =
⎧
⎨

⎩

1 if x ∈ �̄p,
0 if x ∈ �h, dist(x, �hp) ≥ �,

‖∇ξ�‖∞ ≤ C/�.

123



324 J. Jimenez, L. Lévi

To pass to the limit when � goes to 0+, we claim as in [3] that

lim
�→0+

∫

Qh

Kh(u)ϕ̂Bh · ∇ξ�dxdt = ess lim
τ→0−

∫

�hp

Kh(u(σ + τνh))ϕBh · νhdσ.

This way, for any ϕ in D(0, T ;V ), ϕ ≥ 0,
∫

Qp

u∂tϕdxdt =
∫

Qp

(∇φ(u)+Kp(u)Bp
) · ∇ϕdxdt +

∫

Qp

gp(t, x, u)ϕdxdt

+ ess lim
τ→0−

∫

�hp

Kh(u(σ + τνh))ϕBh · νhdσ. (11)

Since u is bounded and φ(u) belongs to L2(0, T ;V ) we may argue—thanks to the Trace Theorem—that there
exists a constant C such that

∀ϕ ∈ D(0, T ;V ),
∣∣∣∣∣

∫

Qp

u∂tϕdxdt

∣∣∣∣∣ ≤ C‖ϕ‖L2(0,T ;V ),

which ensures that ∂tu belongs to L2(0, T ;V ′) (see Appendix of [7]). Thus,

∀ϕ ∈ D(0, T ;V ), −
∫

Qp

u∂tϕdxdt =
∫ T

0
〈〈∂tu, ϕ〉〉dt.

By a density argument we may rewrite (11) with ϕ in L2(0, T ;V ) and (10) follows which completes the proof of
Proposition 1. �

3.4 The uniqueness theorem

Let u1 and u2 be two solutions to (1)–(2) having the same initial data on the hyperbolic zone. Because of Theorem 1,
we are sure that u1 = u2 a.e. on Qh. On the parabolic zone, the uniqueness proof uses a method of doubling only
the time variable and to deal with the convective terms, we need to assume that

Kp ◦ φ−1 is Hölder continuous on φ([a, b])
with a constant C and exponent θ ≥ 1/2.

(12)

Then we may assert that:

Theorem 2 Under (12) the problem (1)–(2) admits at most one weak solution. Besides, if u1 and u2 are two weak
solutions corresponding to initial data u0,1 and u0,2 such that u0,1 = u0,2 a.e. on �h, then

for a.e. t in ]0, T [,
∫

�

|u1(t, .)− u2(t, .)|dx ≤ eM
′
gp
t
∫

�p

|u0,1 − u0,2|dx.

Proof In (10) for u1 and written in variables (t, x)we consider v(t, t̃ , x) = sgnµ(φ(u1)(t, x)−φ(u2)(t̃ , x))αδ(t̃ , t)

while in (10) for u2 written in variables (t̃ , x), we take the test function −v(t, t̃ , x). For any positive δ,

αδ(t̃, t) = γ ((t + t̃ )/2)ρδ
(
(t − t̃ )/2

)
,

where γ is a nonnegative element of D(0, T ) and δ is small enough for αδ to belong to D(]0, T [×]0, T [). By adding
up, we have:
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∫ T

0

∫ T

0
〈〈∂tu1 − ∂t̃ ũ2, sgnµ(φ(u1)− φ(ũ2))〉〉αδdtdt̃

+
∫

]0,T [×Qp
∇(φ(u1)− φ(ũ2)) · ∇sgnµ(φ(u1)− φ(ũ2))αδdxdtdt̃

+
∫

]0,T [×Qp
(Kp(u1)−Kp(ũ2))Bp · ∇sgnµ(φ(u1)− φ(ũ2))αδdxdtdt̃

+
∫

]0,T [×Qp
(gp(t, x, u1)− gp(t̃, x, ũ2))sgnµ(φ(u1)− φ(ũ2))αδdxdtdt̃

= −
∫ T

0
ess lim

τ→0−

∫

�hp

Kh(u1(σ + τνh))Bh · νhsgnµ(φ(u1)− φ(ũ2))αδdσdt̃

+
∫ T

0
ess lim

τ→0−

∫

�hp

Kh(u2(σ̃ + τνh))Bh · νhsgnµ(φ(u1)− φ(ũ2))αδdt̃dσ̄dt (13)

So as to simplify the notation, we add a “tilde” superscript to any function in the t̃ variable. We want to pass to the
limit in (13) when µ goes to 0+ and then when δ tends to 0+. In the first line of the left-hand side, we use for each
term an integration-by-parts formula based on a convexity inequality (see e.g. [8], the Mignot–Bamberger Lemma)
to obtain:

−
∫

]0,T [×Qp

((∫ u1

ũ2

sgnµ(φ(r)− φ(ũ2))dr

)
∂tαδ

)
dxdtdt̃

−
∫

]0,T [×Qp

((∫ u1

ũ2

sgnµ(φ(u1)− φ(r))dr

)
∂t̃αδ

)
dxdtdt̃

In the third line we writeKp(u) = Kp ◦φ−1(φ(u)) for u1 and for ũ2. Then due to (12) and to the Young inequality
with p = 2:∫

]0,T [×Qp
(Kp(u1)−Kp(ũ2))Bp · ∇sgnµ(φ(u1)− φ(ũ2))αδdxdtdt̃

≤
C2‖Bp‖2

L∞(�p)n

2

∫

]0,T [×Qp
|φ(u1)− φ(ũ2)|2θαδsgn′

µ(φ(u1)− φ(ũ2))dxdtdt̃

+1

2

∫

]0,T [×Qp
|∇(φ(u1)− φ(ũ2))|2αδsgn′

µ(φ(u1)− φ(ũ2))dxdtdt̃ ,

where in the right-hand side the second integral vanishes into the diffusion term while, by coming back to the
definition of signµ, the first one is estimated by

Cst
∫

]0,T [×Qp
µ2θ−1αδI[−µ<φ(u1)−φ(ũ2)<µ]dxdtdt̃ ,

which goes to 0 with µ as soon as θ ≥ 1/2.
Now for the right-hand side of (13), since u1 = u2 a.e. onQh then u1(σ + τνh) = u2(σ + τνh) for any negative

τ . However, from (9) used with ϕ in D(Qh), we argue as in [4] (see also [5, chap. 2]) that for any open subset �loc

of �h there exists � in L∞(�loc) such that:

ess lim
τ→0−

∫

�loc

Kh(u(σ + τνh))Bh · νhβdσ =
∫

�loc

�(σ)βdσ,

for any β in L1(�loc). We refer to this relation when �loc = �hp. Thus,

ess lim
τ→0−

∫

�hp

Kh(u2(σ + τνh))Bh · νhsgnµ(φ(u1)(σ )− φ(u2)(t̃ , σ̄ ))αδ(t̃ , t)dσ

=
∫

�hp

�(σ)sgnµ(φ(u1)(σ )− φ(u2)(t̃ , σ̄ ))αδ(t̃ , t)dσ.
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326 J. Jimenez, L. Lévi

So that finally we have to consider the term
∫ T

0

∫ T

0

∫

�hp

(�(t, σ̄ )−�(t̃, σ̄ ))sgnµ(φ(u1)(σ )− φ(u2)(t̃ , σ̄ ))αδ(t̃ , t)dσ̄dtdt̃ .

Eventually, when µ goes to 0+ in (13) through the Lebesgue-dominated convergence Theorem, we obtain:

−
∫

]0,T [×Qp
|u1 − u2|(∂tαδ + ∂t̃αδ)dxdtdt̃ ≤

∫ T

0

∫ T

0

∫

�hp

|�(t, σ̄ )−�(t̃, σ̄ )|αδdσ̄dtdt̃

+M ′
gp

∫

]0,T [×Qp
|u1 − u2|αδdxdtdt̃

+
∫

]0,T [×Qp
|gp(t, x, ũ2)− gp(t̃, x, ũ2)|αδdxdtdt̃ .

Now, we return to the definition of αδ to express the sum ∂tαδ+∂t̃αδ . Then we are able to take the limit with respect
to δ through the notion of the Lebesgue points for an integrable function on ]0, T [. For any γ of D(0, T ), γ ≥ 0,
we obtain

−
∫

Qp

|u1 − u2|γ ′(t)dxdt ≤ M ′
gp

∫

Qp

|u1 − u2|γ (t)dxdt.

We use Gronwall’s Lemma to complete the statement of Theorem 2. �

Remark 2 As a consequence of the proof of Theorem 2 and the preceding statement, we may propose an equivalent
definition of (1)–(2) that might read:

• u ∈ L∞(Q), a < −‖u‖∞ ≤ ‖u‖∞ < b, φ(u) ∈ L2(0, T ;V ),
• ∀ζ ∈ D(Qh), ζ ≥ 0, ∀κ ∈ R,

∫

Qh

L(u, κ, ζ )dxdt ≥ 0.

• ∀v ∈ L2(0, T ;V ),
∫ T

0
〈〈∂tu, v〉〉dt +

∫

Qp

(∇φ(u)+Kp(u)Bp
) · ∇vdxdt +

∫

Qp

gp(t, x, u)vdxdt

+ ess limτ→0−
∫

�hp

Kh(u(σ + τνh))Bh · νhvdσ = 0.

• ∀ζ ∈ H 1
0 (Q),

∫

Q

(
u∂t ζ − (

I�p∇φ(u)+ K(x, u)
) · ∇ζ − g(t, x, u)ζ

)
dxdt = 0.

• ∀ζ ∈ L1+(�h\�hp),∀κ ∈ R,

ess lim
τ→0−

∫

�h\�hp
Fh(u(σ + τνh), 0, κ)Bh(σ̄ ) · νhζdσ ≤ 0.

• ess lim
t→0+

∫

�

|u(t, x)− u0(x)|dx = 0.

4 The existence property

4.1 The second-order problem

We approximate a weak solution to (1)–(2) through a sequence of solutions to viscous problems deduced from
(1)–(2) by adding a diffusion term in accordance with the proposed physical modeling of two layers in the subsoil
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with different geological characteristics. So for any positive ε, we are first interested in the uniqueness and existence
of a measurable and bounded function uε on Q satisfying

∂tuε −
n∑

j=1

∂xj (λε(x)∂xi φε(uε)+Kj(x, uε))+ g(t, x, uε) = 0 on Q, (14)

uε = 0 on ]0, T [×∂�, uε(0, .) = u0 on �, (15)

with λε(x) = I�p(x)+ εI�h(x) and φε(uε) = φ(uε)+ εuε .
We defineN = N1+N2,N1 = ∑

i∈{h,p}M ′
gi

,N2 = ∑
i∈{h,p} K′

i‖divBi‖L∞(�i),N3 = ∑
i∈{h,p} ess sup[0,T ]×�̄i

(gi(t, x, b)+Ki(b)divBi )− and N4 = −∑
i∈{h,p} max[0,T ]×�̄h(gi(t, x, a)+Ki(a)divBi )+. This way,

∃!m0 ∈ R
+, m0e

N T + N3

N (eN T − 1) = b,

∃!n0 ∈ R
−, n0e

N T + N4

N (eN T − 1) = a.

We choose an initial datum u0 in L∞(�) such that

ess sup
�

u0 ≤ m0 and ess inf
�
u0 ≥ n0

and we introduce the nonnegative and nondecreasing time-dependent function

M1: t ∈ [0, T ] → M1(t) = m0 eN t + N3

N (eN t − 1), (16)

and the non-positive and non-increasing function

M2: t ∈ [0, T ] → M2(t) = n0 eN t + N4

N (eN t − 1), (17)

so that M1(T ) = b ≥ m0 and M2(T ) = a ≤ n0.
We investigate the behavior of the sequence (uε)ε>0 when ε goes to 0+. With this view, in order to deal with

bounded solutions, we need the following assumptions on Kh and Kp a.e. on �hp:

∀r ∈ [m0, b], Kh(M1(r))Bh · νh ≥ Kp(M1(r))Bp · νh, (18)

∀r ∈ [a, n0], Kh(M2(r))Bh · νh ≤ Kp(M2(r))Bp · νh, (19)

where M1 and M2 are defined by (16) and (17). From this we may state the first main theorem of this section:

Proposition 2 Under (18) and (19) there exists a unique solution uε to (14)–(15) in W(0, T ) ∩ L∞(Q) such that

∀t ∈ [0, T ], M2(t) ≤ uε(t, .) ≤ M1(t) a.e. in �, (20)

uε(0, .) = u0 a.e. in �, (21)

satisfying the variational equality for any v in H 1
0 (�) and for a.e. t in ]0, T [:

〈∂tuε, v〉 +
∫

�

((λε(x)∇φε(uε)+ K(x, uε)) · ∇v + g(t, x, uε)v)dx = 0. (22)

We recall that, since uε belongs to W(0, T ), for any t in [0, T ], uε(t, .) is an element of L2(�); that gives a
meaning to uε(0, .) a.e. in �.

Proof (a) In a first step, we define for any real a, b, c, B(a, b, c) = max{a,min{b, c}} and we introduce the
modified problem for a fixed positive ε:
⎧
⎪⎪⎨

⎪⎪⎩

Find uε in W(0, T ) such that a.e. on ]0, T [ and for all v in H 1
0 (�),

〈∂tuε, v〉 +
∫

�

(
(λεφ

′
ε(u

�
ε)∇uε + K(x, u�ε)) · ∇v + g(t, x, u�ε)v

)
dx = 0,

uε(0, .) = u0 a.e. in �,

(23)
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where u�ε(t, x) = B(M2(t), uε(t, x),M1(t)). Indeed (20)–(22) is equivalent to (23) since, if (23) has a solution uε ,
then uε satisfies (20): let uε be a solution to (23). The majoration for uε in (20) is obtained by considering in (23)
the test function vµ = sgnµ(uε − M1(t))

+ and by integrating over ]0, s[, for any s of ]0, T ]. For the evolution
term, one adds and subtracts 〈∂tM1(t), vµ〉. Then we integrate using a Mignot–Bamberger formula (see [8]). Also,
because of the Green formula and since ∇vµ is supported on {uε > M1}, we write the for the convective term (with
Qs =]0, s[×�):
∫

Qs

K(x, u�ε) · ∇vµdxdt =
∫

Qs

K(x,M1) · ∇vµdxdt = −
∑

i∈{h,p}

∫

Qi,s

Ki(M1(t))divBivµdxdt

+
∫

�hp

(Kh(M1(t))Bh · νh −Kp(M1(t))Bp · νh)vµdσ,

where, due to (18), the second line in the left-hand side is nonnegative. The diffusive term being also nonnegative,
we have upon µ going to 0+:

∫

�

(uε(s, x)−M1(s))
+dx +

∫

Qs

⎛

⎝M ′
1(t)+

∑

i∈{h,p}
Gi(M1,M1)I�i

⎞

⎠ sgn(uε −M1(t))
+dxdt ≤ 0.

Returning to the definition of M1, we make sure that a.e. on Q,

M ′
1(t)+ ∑

i∈{h,p}Gi(M1,M1)I�i = NM1(t)+N3 + ∑
i∈{h,p}Gi(M1,M1)I�i

≥ NM1(t)+N3 − NM1(t)+ Nb + ∑
i∈{h,p}(gi(t, x, b)

+Ki(b)divBi ))I�i ≥ 0.

The conclusion follows immediately. The reasoning for the minoration in (20) is similar—with the test function
vµ = −sgnµ(uε −M2(t))

− in (23)—and uses (19) to ensure that the integral along the interface is nonnegative.

Remark 3 The previous calculations highlight the fact that if
∑

i∈{h,p}
(gi(., ., n0)−Ki(n0)divBi ) ≤ 0 and

∑

i∈{h,p}
(gi(., ., m0)−Ki(m0)divBi ) ≥ 0,

then [n0,m0] is an invariant region for uε , in the sense that if n0 ≤ u0 ≤ m0 a.e. in � then n0 ≤ uε ≤ m0 a.e.
in Q. This special framework may be derived from the general one by taking N = 0, so that b = m0, a = n0,
N3 = N4 = 0. This way, for any t in [0, T ], M1(t) = b and M2(t) = a and (18) and (19),

Kh(b)Bh · νh ≥ Kp(b)Bp · νh,
Kh(a)Bh · νh ≤ Kp(a)Bp · νh,
which are easier to be satisfied.

The existence property for (14)–(15) is reduced to an existence result for (23). We use the Schauder–Tychonoff
fixed-point Theorem which leads, for a given w in W(0, T ), to the linearized problem:
⎧
⎪⎪⎨

⎪⎪⎩

find U in W(0, T ) such that for any v in H 1
0 (�) and a.e. in ]0, T [,

〈∂tU, v〉 +
∫

�

(
(λεφ

′
ε(w

�)∇U + K(x,w�)) · ∇v + g(t, x,w�)v
)

dx = 0,

U(0, .) = u0.

(24)

It is well known that (24) has a unique solution. Thus we may define the operator

T : W(0, T ) → W(0, T )
w → U ≡ T (w)

where U is the unique solution to (24). In addition, using v = U in (24), we argue that ‖U‖L2(0,T ;H 1
0 (�))

≤
C1. The former estimate and the definition of the norm in L2(0, T ;H−1(�)) entail, by reference to (24), that
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‖∂tU‖L2(0,T ;H−1(�)) ≤ C2, for constants C1 and C2 independent of w (but depending on ε). Hence with C3 =
(C2

1 + C2
2 )

1/2, we may say that

C = {U ∈ W(0, T ), ‖U‖W(0,T ) ≤ C3, U(0, .) = u0 a.e. in �}

is a convex set, weakly compact in W(0, T ), and such that T (C) ⊂ C. As C is a metric for the weak topology
σ(W(0, T ),W ′(0, T )), we consider (wn)n to be a sequence converging toward w weakly in W(0, T ) in order to
establish that (T (wn))n weakly converges toward T (w) inW(0, T ). For any n, we setUn = T (wn). Since (Un)n is
uniformly bounded inW(0, T )with respect town–that is, uniformly with respect to n–there exists a U inW(0, T ),
such that, up to a subsequence, (Un)n goes to U weakly inW(0, T ), strongly in L2(Q) and Un(0, .) goes to U(0, .)
weakly in L2(�). Consequently U(0, .) = u0 a.e. in � and thus, by taking the limit with respect to n in (24), we
prove that U = T (w) and the whole sequence (Un)n goes to T (w). Eventually, T has at least one fixed point uε
that is a solution to (23).

The statement regarding the uniqueness for (20)–(22) uses a Holmgren-type duality method. Let u and û be two
weak solutions. For any t of [0, T ], we consider z(t, .) (resp. ẑ(t, .)) in H 1

0 (�) such that for all v in H 1
0 (�), for all

t in [0, T ]:
∫

�

λε∇z · ∇vdx =
∫

�

uvdx

(
resp.

∫

�

λε∇ ẑ · ∇vdx =
∫

�

ûvdx

)
. (25)

It should be noted that, since ∂tu (resp. ∂t û) belongs to L2(0, T , V ′), we are able to define, for a.e. t in ]0, T [, ∂t z
(resp. ∂t ẑ) in H 1

0 (�) characterized by the variational equality for any v in H 1
0 (�) and t in [0, T ]

∫

�

λε∇∂t z · ∇vdx = 〈∂tu, v〉
(

resp.
∫

�

λε∇∂t ẑ · ∇vdx = 〈∂t û, v〉
)
. (26)

First we take v = z− ẑ in (22) for u and for û and in (26). We integrate from 0 and s, s in [0, T ], to obtain

∫

Qs

λε∇∂t (z− ẑ) · ∇(z− ẑ)dxdt +
∫

Qs

λε∇(φε(u)− φε(̂u)) · ∇(z− ẑ)dxdt

= −
∫

Qs

(K(x, u)− K(x, û)) · ∇(z− ẑ)dxdt −
∫

Qs

(g(t, x, u)− g(t, x, û))(z− ẑ)dxdt.

We observe that

∫

Qs

λε∇∂t (z− ẑ) · ∇(z− ẑ)dxdt =
∫

Qs

λε∂t (∇(z− ẑ)) · ∇(z− ẑ)dxdt

= 1

2

∫

�

λε |∇(z− ẑ)|2(s, .)dx,

since ∇z(0, .) = ∇ ẑ(0, .) as a consequence of (25) with t = 0.
In addition, we choose v = φε(u)− φε(̂u) in (25) to write:

∫

Qs

λε∇(φε(u)− φε(̂u)) · ∇(z− ẑ)dxdt =
∫

Qs

(u− û)(φε(u)− φε(̂u))dxdt

≥ ε‖u− û‖2
L2(Qs)

.

We use the Lipschitz condition for Ki and gi , i ∈ {h, p}. Hence Young’s inequality (with p = 2) provides, for any
s in [0, T ]:
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1

2

∫

�

λε |∇(z− ẑ)|2(s, .)dx + ε‖u− û‖2
L2(Qs)

≤ 2‖u− û‖L2(Qs)
(max(‖Bh‖∞K′

h, ‖Bp‖∞K′
p)‖∇(z− ẑ)‖L2(Qs)n

+ max(M ′
gh
,M ′

gp
)‖z− ẑ‖L2(Qs)

)

The Poincaré inequality (to estimate ‖z − ẑ‖L2(Qs)
with ‖∇(z − ẑ)‖L2(Qs)n

) and the Young inequality lead to the
existence of a constant C such that:

1

2

∫

�

λε |∇(z− ẑ)|2(s, .)dx ≤ C‖∇(z− ẑ)‖2
L2(Qs)n

.

The conclusion follows by using Gronwall’s Lemma (recall that z(t, .) and ẑ(t, .) belong to H 1
0 (�)).

Now we point out some a priori estimates for the sequence (uε)ε>0 of viscous Problems (14)–(15)ε>0:

Proposition 3 There exists a constant C, independent of ε such that

‖(λε)1/2∇φ̂(uε)‖2
L2(Q)n

+ ‖(ελε)1/2∇uε‖2
L2(Q)n

≤ C (27)

‖∂tuε‖L2(0,T ;H−1(�)) ≤ C, (28)

where φ̂(x) =
∫ x

0

√
φ′(τ )dτ .

Proof We take v = uε in (22) and integrate over ]0, T [. The resulting equality provides an estimate of λ1/2
ε ∇φ̂ε(uε)

in L2(Q)-norm. We mention that the convective term is split into two integrals overQh andQp. Then we write for
i in {h, p}:
∫

Qi

Ki(uε)Bi · ∇uεdxdt =
∫

Qi

∇
(∫ uε

0
Ki(τ)dτ

)
.Bidxdt

= −
∫

Qi

(∫ uε

0
Ki(τ)dτ

)
divBidxdt +

∫

�hp

(∫ uε

0
Ki(τ)dτ

)
Bi · νidσ.

Due to (20), each term in the left-hand side is uniformly bounded with respect to ε and (27) follows. Eventually
(28) is obtained by coming back to the definition of the norm in L2(0, T ;H−1(�)), by using (22) and the estimates
(20) and (27), with the same arguments as towards the end of the proof of Proposition 1. �

4.2 The viscous limit

To describe the behavior of the sequence (uε)ε>0 when ε goes to 0+ on the hyperbolic domain, we take advantage
of (20) and of:

Claim 1 ([9]) Let O be an open bounded subset of R
q (q ≥ 1) and (un)n>0 a sequence of measurable functions

on O such that,

∃M > 0,∀n > 0, ‖un‖L∞(O) ≤ M.

Then there exist a subsequence (uϕ(n))n>0 and a measurable function π in L∞(]0, 1[×O) such that, for all
continuous and bounded functions f on O×] −M,M[,

∀ξ ∈ L1(O), lim
n→+∞

∫

O
f (x, uϕ(n))ξdx =

∫

]0,1[×O
f (x, π(α,w))dαξdx.

Such a result has first been applied to the approximation through the artificial-viscosity method of the Cauchy
problem in R

p for conservation laws, as one can establish a uniform L∞-control of approximate solutions. It has
also been applied to the numerical analysis of transport equations since “Finite-Volume” schemes only give an
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L∞-estimate uniformly with respect to the mesh length of the numerical solution [9]. On the parabolic area, esti-
mates (20), (27) and (28) are not sufficient to study the behavior of (uε)ε>0. That is why we need an additional
assumption on φ:

φ−1 is Hölder-continuous on φ([M2(T ),M1(T )])with an exponent τ in ]0, 1[. (29)

In this framework, we can refer to the arguments put forward in [8, Chapt. 2]. From (28) the sequence (∂tuε)ε>0

remains fixed in a bounded subset of L2(0, T ;H−1(�p)) and due to (20) and (27), the sequence (φ(uε))ε>0 is
bounded in L2(0, T ;V ) uniformly with respect to ε. Using that

∀s ∈]0, 1[, L2(0, T ;V ) ↪→ L2(0, T ;H 1(�p)) ↪→ L2(0, T ;Ws,2(�p)),

we argue that uε ≡ φ−1(φ(uε)) is bounded in L2/τ (0, T ;Wτ s,2/τ (�p)). The compact embedding ofWτ s,2/τ (�p)

in L2/τ (�p) and the J.L.Lions compactness Theorem [10, p. 57] ensure that W ≡ {v ∈ L2/τ (0, T ;Wτ s,2/τ (�p));
∂tv ∈ L2(0, T ;H−1(�p))} is compactly embedded in L2/τ (0, T ;L2/τ (�p)). Eventually we have:

Proposition 4 When (29) holds, there exists a measurable function u inL∞(Q)with φ(u) inL2(0, T ;V ) and such
that up to a subsequence when ε goes to 0+,

uε ⇀ u in L∞(Q) weak − �, and in Lq(Qp), 1 ≤ q < +∞,

∇φ(uε) ⇀ ∇φ(u) weakly in L2(Qp)
n, ε∇φ(uε) → 0+ strongly in L2(Qh)

n,

λεε∇uε → 0 strongly in L2(Qh)
n.

We are now able to state the second main theorem of this section:

Theorem 3 Problem (1)–(2) has a weak solution that is the limit in Lq(Q), 1 ≤ q < +∞ of the whole sequence
of solutions to (14)–(15)ε>0 when ε goes to 0+.

Proof We consider the function u highlighted in Proposition 4. Since (uε|�h)ε>0 is uniformly bounded, there exists
a subsequence, still labeled (uε|�h)ε>0, and a measurable and bounded function π , called a process, on ]0, 1[×Qh

such that for any continuous bounded function ψ on Qh×]M2(T ),M1(T )[ and ξ in L1(Qh)

lim
ε→0+

∫

Qh

ψ(t, x, uε)ξdxdt =
∫

]0,1[×Qh
ψ(t, x, π(α, t, x))ξdαdxdt. (30)

We first establish that on Qh, the process π is reduced to u|�h and second we prove that u is a weak solution
to (1)–(2) for initial data u0. To do so, we return to (22) and for any real κ we take the test function vεµ ≡
sgnµ(φ(uε)− φ(κ))ζ1ζ2, where ζ1 belongs to D(−T , T ) and ζ2 to D(�), ζi ≥ 0. We integrate with respect to the
time variable and perform the following transformations:
For the evolution term, with Iµ(uε, κ) = ∫ uε

κ
sgnµ(φ(τ) − φ(κ))dτ , through the Mignot–Bamberger integration

by parts formula (see [8]),
∫ T

0
〈∂tuε, sgnµ(φ(uε)− φ(κ))ζ2〉ζ1dt = −

∫

Q

Iµ(uε, κ)ζ2∂t ζ1dxdt −
∫

�

Iµ(u0, κ)ζ2ζ1(0)dx.

For the diffusion term, we develop the partial derivatives and we use the fact that sgnµ(.) is nondecreasing. Then
we have:∫

Q

λε∇φε(uε) · ∇vεµdxdt ≥
∫

Q

λεsgnµ(φ(uε)− φ(κ))∇φ(uε)ζ1 · ∇ζ2dxdt

+
∫

Q

λεεsgnµ(φ(uε)− φ(κ))∇uεζ1 · ∇ζ2dxdt.

Now, in order to take the ε-limit and then the µ-limit separately in the parabolic and the hyperbolic zones, the
convection term is split into two integrals over Qh and Qp:

∑
i∈{h,p}

∫

Qi

Ki(uε)sgn′
µ(φ(uε)− φ(κ))∇φ(uε) · Biζ1ζ2dxdt

+∑
i∈{h,p}

∫

Qi

Ki(uε)sgnµ(φ(uε)− φ(κ))Bi · ∇ζ2 ζ1dxdt.
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Let us focus on the first line when i = h (the reasoning when i = p being similar). We consider the flux term

Iε,µ =
∫

Qh

Kh(uε)sgn′
µ(φ(uε)− φ(κ))∇φ(uε) · Bhζ1ζ2dxdt

that has to be carefully studied since we only have weak convergence for (uε)ε>0 and for (∇φ(uε))ε>0. That is
why we introduce

Dµ(v,w) =
∫ v

w

(Kh ◦ φ−1)(τ )sgn′
µ(τ − w)dτ.

So that,

Iε,µ =
∫

Qh

∇(Dµ(φ(uε), φ(κ))) · Bhζ1ζ2dxdt

= −
∫

Qh

Dµ(φ(uε), φ(κ))(ζ1ζ2divBh + ζ1∇ζ2 · Bh)dxdt

+
∫

�hp

Dµ(φ(uε), φ(κ))Bh · νhζ1ζ2dσ,

because of Green’s formula. We just mention that, since φ(uε) is an element ofL2(0, T ;H 1(�)), for a.e. t of ]0, T [,
(φ(uε)|�h)|�hp = (φ(uε)|�p)|�hp . We take now the ε-limit through (30). For the boundary integral,Dµ(., φ(k)) be-
ing nonlinear, the weak convergence of the traces of φ(uε) on�hp is not sufficient to pass to the limit. That is why we
consider the sequence (Dµ(φ(uε), φ(κ))ζ2)ε>0. On account of Proposition 4 and since (Dµ(., φ(κ))) is Lipschitz,
(Dµ(φ(uε), φ(κ))ζ2)ε>0 strongly converges toward Dµ(φ(u), φ(κ))ζ2 in Lq(Qp), 1 ≤ q < +∞. Besides, based
on a chain-rule argument and estimate (27), we argue that (Dµ(φ(uε), φ(κ))ζ2)ε>0 is uniformly bounded in
L2(0, T ;V ) ∩ L∞(Q) and so weakly converges (up to a subsequence) toward Dµ(φ(u), φ(κ))ζ2 in L2(0, T ;V ).
The trace operator from L2(0, T ;V ) into L2(�p) being linear and continuous, (Dµ(φ(uε), φ(κ))ζ2)ε>0 weakly
converges toward (Dµ(φ(u), φ(κ))ζ2) in L2(�p), and so in L2(�hp). Then limε→0+ Iε,µ = Iµ, where

Iµ = −
∫

Qh×]0,1[
Dµ(φ(π), φ(κ))(ζ1ζ2divBh + ζ1∇ζ2 · Bh)dαdxdt

+
∫

�hp

Dµ(φ(u), φ(κ))Bh · νhζ1ζ2dσ.

To take the limit withµ, we come back to the definition of sign′
µ and use the fact that, sinceKh◦φ−1 is continuous

on φ([M2(T ),M1(T )]), (Dµ(v,w))µ>0 converges toward sgn(v−w)Kh◦φ−1(w) a.e. onQh×]0, 1[ and dHn-a.e.
on �hp. From the Lebesgue-dominated convergence Theorem, it follows that limµ→0+ Iµ = I where

I = −
∫

Qh×]0,1[
sgn(φ(π)− φ(κ))Kh(κ)(ζ1ζ2divBh + ζ1∇ζ2 · Bh)dαdxdt

+
∫

�hp

sgn(φ(u)− φ(κ))Kh(κ)Bh · νhζ1ζ2dσ.

Note that sgn(φ(π)− φ(κ)) = sgn(π − κ) a.e. on Qh×]0, 1[. Eventually,

−
∫

Qp

Lp(u, κ, ζ1ζ2)dxdt −
∫

Qh×]0,1[
Lh(π, κ, ζ1ζ2)dαdxdt

−
∫

�

|u0 − κ|ζ1(0)ζ2dx +
∫

Qp

∇|φ(u)− φ(κ)| · ζ1∇ζ2dxdt

+
∫

�hp

{Kh(κ)Bh −Kp(κ) · Bp} · νhsgn(φ(u)− φ(κ))ζ1ζ2dσ ≤ 0.

(31)
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For ζ2 in D(�h), we deduce that

−
∫

Qh×]0,1[
Lh(π, κ, ζ1ζ2)dαdxdt ≤

∫

�h

|u0 − κ|ζ1(0)ζ2dx.

Therefore, by following ideas in [4] or in [5, chap. 2], but here in the context of a process solution, we may be sure
that,

ess lim
t→0+

∫

]0,1[×�h
|π(α, t, x)−�(x)|dαdx ≤

∫

�h

|u0 −�(x)|dx, (32)

for any bounded measurable � on �h and (7) on �h for π is obtained by � = u0.
Now to establish that (6) is fulfilled, we take in (22) the test function v = ∂1Hl(uε, κ)ζ1ζ2, where ζ1 belongs to

D(0, T ) and ζ2 to D(�h), ζ(t, .) = 0 on �hp for any t of [0, T ], ζi ≥ 0 and,

∀l ∈ N
�, Hl(z,w) =

(
(dist(z, I[0, w]))2 +

(
1

l

)2
)1/2

− 1

l
,

Qh,l(z, w) =
∫ z

w

∂1Hl(τ,w)K
′
h(τ )dτ,

is the family of boundary entropy–entropy flux pair introduced by Otto [4] (or [5, chap. 2]). We emphasize that
∂1Hl(uε, κ)ζ1ζ2 is an element of L2(0, T ;H 1

0 (�h)) so that calculations may be performed as if we were in the
single domain Qh. In particular, the Green formula does not give rise to integrals along the interface. We integrate
with respect to the time variable and use the Mignot–Bamberger chain-rule argument. we have:

−
∫

Qh

(
Hl(uε, κ)ζ2∂t ζ1 − Qh,l(uε, κ)Bh · ζ1∇ζ2 − Gh,l(uε, κ)ζ1ζ2

)
dxdt

≤ −ε
∫

Qh

∂1Hl(uε, κ)ζ1∇ζ2 · ∇φε(uε)dxdt,

the convexity of the function ξ → Hl(ξ, .) being taken into account and

G(uε, κ) =
∫ uε

κ

(
Kh(τ)∂

2
11Hl(τ, κ)

)
dτ divBh + gh(t, x, uε)∂1Hl(uε, κ).

On account of (30) we take the ε-limit. It follows:

−
∫

]0,1[×Qh

(
Hl(π, κ)ζ2∂t ζ1 − Qh,l(π, κ)Bh · ζ1∇ζ2 − Gh,l(π, κ)ζ1ζ2

)
dαdxdt ≤ 0.

At this point, we adapt Otto’s works providing that:

ess lim
τ→0−

∫

]0,1[×�h\�hp
Qh,l(π(α, σ + τν), κ)Bh(σ̄ ) · νhζdαdσ ≤ 0,

for any ζ of L1+(�h\�hp). Boundary condition (6) for π follows by observing that (Qh,l)l∈N∗ uniformly converges
toward Fh(z, 0, κ) as l goes to +∞.

So π “fulfills” (5) with ζ ∈ D(Qh), (6) and (7) where the integrals over �h\�hp, � and Qh are, respectively,
turned into integrals over ]0, 1[×�h\�hp, ]0, 1[×�h and ]0, 1[×Qh with respect to the corresponding measure.
This way, by reasoning as in Theorem 1, if π1(α, ., .) and π2(β, ., .) are two process solutions for initial data u0,1

and u0,2, then for a.e. t in ]0, T [,
∫

]0,1[2×�h
|π1(α, t, x)− π2(β, t, x)|dαdβdxdt ≤

∫

�h

|u0,1 − u0,2|dx eM
′
gh
t
.

When u0,1 = u0,2 on �h, there exists a measurable and bounded function uh on Qh such that a.e. on Qh,
uh(., .) = π1(α, ., .) = π2(β, ., .) for a.e. α and β in ]0, 1[. Besides, the uniqueness property ensures that the
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whole sequence (uε)ε>0 strongly converges to uh in Lq(Qh), 1 ≤ q < +∞. Thus, uh = u|�h a.e. onQh and from
(31) we deduce that u satisfies (5), for any ζ of D(0, T ) ⊗ D(�) so by density for any ζ of D(Q), and (6). To
complete the proof of Theorem 3 we only need to ensure that (7) holds for u. Due to (32) we just have to concentrate
on �p. We consider (31) for ζ2 in D(�p):

−
∫ T

0

(∫

�p

|u− κ|ζ2dx + f (t)

)
ζ ′

1(t)dt ≤
∫

�p

|u0 − κ|ζ2ζ1(0)dx,

with

f (t) =
∫

�p

∫ t

0
[−sgn(u(τ, x)− κ)(Kp(u(τ, x))−Kp(κ))Bp · ∇ζ2

+ gp(τ, x, u(τ, x))sgn(u(τ, x)− κ)ζ2 − |φ(u(τ, x))− φ(κ)|�ζ2]dτ)dx.
So the time-dependent function t → ∫

�p
|u− κ|ζ2dx + f (t) is identified a.e. with a non-increasing and bounded

function, so it has an essential limit when t goes to 0+, t in ]0, T [\O, where L(O) = 0. As f goes to 0 with t , we
obtain

ess lim
t→0+

∫

�p

|u− κ|ζ2dx ≤
∫

�p

|u0 − κ|ζ2dx, (33)

for any function ζ2 of D(�p), ζ2 ≥ 0, which concludes the proof of Theorem 3. �

5 Conclusion

This paper presents a mathematical analysis of a coupling of hyperbolic/parabolic scalar conservation laws in a
bounded domain� of R

n, n ≥ 1. The special framework considered only takes into account the situation of outward
characteristics for the first-order operator set in�h; this means that data leave the hyperbolic zone to enter the para-
bolic one. Hence, from a mathematical point of view, the problem is well-posed in the hyperbolic domain where the
existence and uniqueness of a solution is entirely determined by the knowledge of initial and outer-boundary data.
To describe the behavior of a solution in the parabolic zone (and to state a uniqueness property), we need to take
into account data entering from the hyperbolic domain. In a certain way, the problem may be viewed as uncoupled,
but one should not forget that suitable transmission conditions are needed to ensure uniqueness in the parabolic
zone. These conditions are not explicitly stated in this paper since they are included in the global formulation itself
on the whole domain. They require the continuity of the flux along the interface and are written through an entropy
condition between traces coming, respectively, from the parabolic and the hyperbolic area as soon as the latter has
a meaning (for example when in the hyperbolic domain, the solution is a bounded function of bounded variation).
In fact, as soon as transmission conditions along the interface are available, a uniqueness property for the whole
problem defined on the whole studied field is obtained in a forthcoming paper, without a monotonicity assumption
on Kh and a sign condition for Bh · νh along the interface. This way the direction of the characteristics for the
first-order operator set in the hyperbolic zone do not need to be a priori determined along the interface between
the two domains. For our point of view, if these transmissions cannot be explicitly stated, they need at least to be
included in a global formulation on the whole domain as in the present work. This forthcoming work states another
existence property that does not refer to a viscous problem. The construction of a solution requires the knowledge
of the characteristics field along the interface in order to first define a solution on the parabolic domain and then
on the hyperbolic one, or conversely. To release the latter point, a new way to obtain an existence result has to be
investigated.

Of course, the previous considerations are meaningless when the operators set on the parabolic and hyperbolic
domains are linear. In this situation, no entropy condition is needed to ensure the uniqueness of a solution in the
hyperbolic zone; the characteristics are parallel straight lines in the hyperbolic field and so are determined along
the interface. The transmission conditions are written as a continuity of the flux and of the trace along the interface,
since in this case a weak solution has a trace coming from the hyperbolic area.
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